MTS/NAV 2020 FOCUS AREA 1

Innovative Infrastructure and System Enhancements

TEAM MEMBERS

- Stan Woodson, GSL (Leader)
- Bob Mann, TEC
- Joe Padula, ITL
- Bob Ebeling, ITL
- Jim McDonald, GSL
- Ed Thompson, CHL
- Harold Britton, TEC
- Richard Stockstill, CHL, CRREL
- Terri Prickett, CHL (Recorder)

OBJECTIVES/GOALS

- Reduce life cycle maintenance costs
- Improve transportation efficiency
- Minimize construction time, reduce risks, and minimize impacts to navigation and the environment
- Integrate national security requirements into the MTS

GENERAL APPROACH

- Determination and assessment of current capacity and future industry needs
- Laboratory research, field tests and demonstrations, tech transfer and insertion (implementation)

PRIMARY PRODUCTS

- 1. Technology for underwater construction, inspection, monitoring, repair, and maintenance
- 2. Technology for design, construction, maintenance, and repair of navigation structures
- 3. Technology for improving transportation operational efficiency

PRIMARY PRODUCT 1

 Technology for underwater construction, inspection, monitoring, repair, and maintenance

- Materials and methods for underwater construction and repair
 - Concrete and grouts (continue material development and include environmental effects)
 - Reusable/recyclable material (e.g. on-site materials)
- Equipment and methods for underwater inspection and monitoring of sites and structures including material properties assessment (both from boat or remote monitoring) equipment investigation (off-the-shelf) and get it into the field)
 - Impact-echo
 - High-resolution acoustic imaging
 - Time Domain Reflectometry (determine bed elevations) (i.e. Needed at entrance channels)
 - Predictive models (for long-term maintenance) may go with routine underwater inspections

BENEFITS PRODUCT 1

- Underwater construction and repair capabilties
 - Rapid construction and repair
 - Minimize environmental impact
 - Reduce construction costs
 - Minimize impact on navigation
- Enhanced capabilities for submerged debris detection
- Rapid assessment (i.e. damage assessment after an incident)
- Security (i.e. Norfolk Harbor already investigating many of these technologies

PRIMARY PRODUCT 2

Technology for design, construction, maintenance, and repair of navigation structures

- Vessel Impact Loadings (ability to handle new container systems

 inland, expand impact prediction capabilities for coastal and
 Great Lake facilities)
 - Loads on walls, gates, and port facilities
 - Loads on connections between barges
- Soil Structure Interaction (SSI) of retaining walls with multiple rows of anchors – complete displacement prediction capabilities for districts, movement based on construction-induced and longterm movements
- Computer modeling
 - Integrated system design analysis (i.e. Guierrmo Riveros, ITL), definitely in structural design
 - Hydraulics of float-in structures (what are flow conditions when the float-in is coming in)
 - Ice and Debris passage model at navigation projects to look at ice avoidance
 - Wave action on coastal structures

- Flow training devices during construction (current control to help float-in devices and reduce impacts on navigation)
- High performance materials for rapid repair and replacement
 - Breakwaters
 - Lock wall and gate impacts
 - Life cycle maintenance reduction (composite materials)
- Design and structural performance improvement of lock and spillway gates, and closure structures (I.e. flood protection
 - Addition of redundancy to bulkhead stacks
 - Modular design of lock and spillway gates for rapid replacement (because of accidents or terrorism)

- Decision-making tools for prioritizing structure maintenance and improvements
 - Quantitative and objective condition assessment tools
 - Deterioration models (l.e. concrete)
- Effective channel design (deep and shallow draft)
 - Lock approach
 - Entrance channel

BENEFITS PRODUCT 2

- Alternate construction methods that minimize environmental impacts
- Reduced time/cost for construction, maintenance, and repair
- Rapid return to service following incident (terrorism or other)
- Increased/improved service life performance

PRIMARY PRODUCT 3

Technology for improving transportation operational efficiency

- Navigation Information Systems
 - Enhanced fog vision
 - Display panel integration
 - Predictive steering
 - Real-time depth and flow information (NOAA already has such a similar system for ports)
 - Portable tow thrusters
 - Ice and Debris conditions
- Guidance for mooring in lock approach during operations (i.e. procedures or better understanding of effect of hydraulic loads translated thru the vessel onto the structure)
- Vessel motion at entrance channels (vessel simulator and other modeling tools)
- Ice/Debris Effects
 - Investigate feasibility of winter long navigation on the upper MS and Great Lakes in light of recent climate trends
 - Ice-shedding or avoidance techniques using power other than electricity (i.e. passive device such as low-adhesion lock wall)
 - Ice/Debris passage and avoidance methods

- Continuous operations (24-7-365), maintenance, and repair
 - Alternate/backup systems
 - Component standardization
 - Rapid structural repair (including breakwaters, locks, etc.)
- Operational systems
 - Barge connections (lashings)
 - Operational efficiency of mechanical equipment, filling and emtying systems, and gates
- Traffic usage assessment tools
- Operational impact of wave action in ports and harbors

PRODUCT 3 BENEFITS

- Decreased transport times
- Increased system capacity
- Decreased damage to moored vessels and docks

CONNECTIONS

- Infrastructure Technology Program
- Continuing Navigation Program (Sandra's program)
- Other federal agencies (e.g. NOAA, Coast Guard, Navy, DOT)
- Port Authorities

OTHER THOUGHTS/ACTIONS

Consider cost/benefit considerations of deeper/wider channels (inland?)

SHOW US THE MONEY!!!